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Recently, it has been demonstrated that a careful treatment of both longitudinal and transverse matrix
elements in electron energy loss spectra can explain the mystery of relativistic effects on the magic angle.
Here, we show that there is an additional correction of order �Z��2, where Z is the atomic number and � the
fine structure constant, which is not necessarily small for heavy elements. Moreover, we suggest that macro-
scopic electrodynamic effects can give further corrections which can break the sample independence of the
magic angle.
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I. INTRODUCTION

The title of this paper is in reference to a recent work by
Jouffrey et al.1 with the title “The Magic Angle: A Solved
Mystery.” The magic angle in electron energy loss spectros-
copy �EELS� is a special value of the microscope collection
angle �c at which the measured spectrum “magically” be-
comes independent of the angle between the incoming beam
and the sample “c axis.” The mystery, in the context of
200 keV electron microscopy, is that standard semirelativis-
tic quantum theory yields a ratio of the magic angle �M to
“characteristic angle” �E of more than twice the observed2

value. Unfortunately, time3 and again,2,4 the theoretical jus-
tification of the factor of 2 turned out to be an errant factor of
2 elsewhere in the calculation. A key contribution of Jouffrey
et al. was the observation that relativistic “transverse” ef-
fects, when properly included in the theory, naturally give a
factor of 2 correction to the nonrelativistic magic angle.
Here, we show that there are yet additional corrections to the
theory which can even break the sample independence of the
magic angle.

As in Ref. 1, we consider here the problem of a relativis-
tic probe electron scattering off of a macroscopic condensed
matter sample. Similar problems have been solved long ago
using both semiclassical5 and fully quantum-mechanical
approachs.6–8 Indeed, the fully quantum-mechanical, relativ-
istic case of scattering two plane-wave electrons has long
been a textbook problem.9,10 This classic problem was re-
vived recently in the works of Jouffrey et al.1 and
Schattschneider et al.,11 in which a “flaw” in the standard
theory is pointed out. The flaw is the approximation that the
so-called longitudinal and transverse matrix elements for the
scattering process may be summed incoherently, as argued
by Fano in a seminal paper.7 In fact, this approximation is
only valid when the sample under consideration posseses
certain symmetries. In a later review paper,8 Fano states this
condition explicitly; namely, that his original formula for the
cross section is only applicable to systems of cubic symme-
try. However, this caveat seems to have been generally ig-
nored and, hence, turns out to be the source of the magic
angle “mystery.”1 Jouffrey et al., and later Schattschneider et
al., showed that if one correctly sums and squares the tran-
sition matrix elements then, in the dipole approximation, one

finds the magic angle corrected by a factor of 2.
Our aim here is to examine the theory in more detail in

order to derive both relativistic and material-dependent cor-
rections to the magic angle. In Sec. II, we consider relativis-
tic electron scattering within the formalism of quantum elec-
trodynamics �QED�. Working in the Coulomb gauge, we
show that one can almost reproduce the results of Jouffrey et
al. and the theory of Schattschneider et al., apart from a
simple correction term of order �� /mc2, which is not always
negligible. Here, �� is the energy lost by the probe, and mc2

is the rest energy of an electron. In Sec. III, we suggest the
possibility of incorporating macroscopic electrodynamic ef-
fects into the theory, which can break the symmetry of
sample independence of the magic angle.

II. COULOMB GAUGE CALCULATION

An appealing aspect of the formalism of Schattschneider
et al. is its simplicity. Their approach is similar to the semi-
classical approach of Møller,5 but with the added simplifica-
tion of working with a probe and sample described by the
Schrödinger equation, rather than the Dirac equation. They
also find that the theory is simplified by choosing to work in
the Lorentz gauge. Unfortunately, however, the theory of
Møller is somewhat ad hoc in that a classical calculation in
the Lorentz gauge is modified by replacing the product of
two classical charge densities by the product of four different
wave functions in order to obtain the transition matrix ele-
ment. For the Møller case, this procedure is justified a pos-
teriori by the fact that it reproduces the correct result, but is
only rigorously justified by appealing to the method of sec-
ond quantization.9 Møller’s procedure is physically reason-
able a priori, because Møller was interested in the scattering
of electrons in vacuum. However, the theory of
Schattschneider et al., which largely mimics Møller’s theory,
is less physically reasonable a priori, since the electrons are
not scattering in vacuum, but are inside a solid which can
screen the electrons. Nevertheless, since the discrepancy is
small, the theory of Schattschneider et al. is justified a pos-
teriori to a lesser extent by experiment.2 We, thus, refer to
the theory of Schattschneider et al. as a “vacuum-relativisitic
theory.” Consequently, in an effort to account for the discrep-
ancy with experiment, we feel that it is useful to rederive the
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results of Jouffrey et al. from a more fundamental starting
point.

It is easy to see that the theory of Schattschneider et al. is
not formally exact, though for many materials the error in the
vacuum-relativistic limit is negligible. In fact, the discrep-
ancy can be easily explained via single-particle quantum me-
chanics: although Schattschneider et al. work explicitly in
the Lorentz gauge, they also make the assumption that the
momentum and the vector potential commute,

p · A�r�=
?

A�r� · p . �1�

Of course, this commutation relation is only exact in the
Coulomb gauge. In the end, however, the error in this ap-
proximation only affects the final results �e.g., matrix ele-
ments� by a correction of order �� /mc2 compared to unity,
where �� is the energy lost by the probe. Since �� /mc2 is at
most �Z��2 for deep-core energy loss, the effect is usually
negligible, except, of course, for very heavy atoms. To see
how corrections such as the above enter into the theory, and
to further determine whether or not such corrections are
meaningful or simply artifacts of the various approximations
used in the theory of Schattschneider et al., we find it useful
to present a fully quantum-mechanical, relativistic many-
body treatment along the lines of Fano,8 but without any
assumption of symmetry of the sample. Our treatment is at
least as general as that of Schattschneider et al. as far as the
symmetry of the sample is concerned. Thus, going beyond
the formulations of Schattschneider et al. and Møller, we
take as our starting point the many-particle QED Hamil-
tonian. We then show that in a single-particle approximation,
the theory yields the result of Schattschneider et al. together
with the correction mentioned above.

Our starting point, therefore, is the Hamiltonian in Cou-
lomb gauge9

H = Hel + Hint + Hrad, �2�

where the Hamiltonian has been split into three parts:
�i� the unperturbed electron part

Hel =� d3x�†�x��c� · p + �mc2���x� , �3�

where ��x� is the second-quantized Dirac field, �i and � are
the usual Dirac matrices, m is the electron mass, and c is the
speed of light;

�ii� the unperturbed �transverse� radiation part

Hrad = �
k

�
i=1

2

ak,i
† ak,i��k, �4�

where ak,i destroys a photon of momentum k, polarization
�k,i, and energy ��k; and

�iii� the interaction part

Hint = + e� d3x�†�x�� · A�x���x� ,

+
e2

2
� d3xd3y

�†�x��†�y���y���x�
�x − y�

, �5�

where

A�x� = �
k,i

�2��c2

V�k
�ak,i�k,ie

ik·x + ak,i
† �*

k,ie
−ik·x� , �6�

e= �e� is the charge of the proton, and V is the system vol-
ume.

Let us next specialize to the case of a fixed number �N
+1� of electrons where the �N+1�th electron is singled out as
the “fast probe” traveling with velocity v0, and the remaining
N electrons make up the sample. We also introduce a lattice
or cluster of ion cores �below we consider only elemental
solids of atomic number Z, but the generalization to more
complex systems is obvious� which is treated classically, and
which gives rise to a potential ve-core�x�=�i=1

N/Z�−Ze2� / �x
−Ri� as seen by the electrons. In this case, our Hamiltonian
becomes

H = �c� · �p +
e

c
A�r�	 + �mc2
 + ve-core�r�

+ �
i=1

N �c��i� · �p�i� +
e

c
A�r�i��	 + ��i�mc2
 + e2�

i=1

N
1

�r − r�i��

+
e2

2 �
1=i�j=1

N
1

�r�i� − r�j��
+ �

i=1

N

ve-core�r�i�� + vcore-core + Hrad,

�7�

where the coordinates which are not labeled by an index
refer to the probe electron. The interaction vcore-core between
ion cores is a constant and is henceforth dropped.

To proceed to a single-particle approximation for the
sample, the interaction of the sample electrons among them-
selves and with the potential of the ion cores may be taken
into account by introducing a single-particle self-consistent
potential v�x� which includes both ve-core�x� and exchange-
correlation effects. The interaction of the probe electron with
the effective single electron of the sample will be considered
explicitly. The difference between this interaction and the
actual interaction between the probe and sample can be ac-
counted for by introducing another potential v��x� which is
not necessarily the same as v�x�; v��x� is, in theory, “closer”
to the pure ve-core�x� potential than v�x� though, in practice,
this difference may not be of interest �see the Appendix for
further explanation of this point�. The potential v��x� leads to
diffraction of the probe electron, which will not be consid-
ered in this paper in order to make contact with the theory of
Schattschneider et al. It is also for this reason that we have
introduced a single-particle picture of the sample, along with
the fact that we want to apply this theory to real condensed
matter systems in a practical way. The extension to the
many-body case, in which the only single-body potential

SORINI, REHR, AND LEVINE PHYSICAL REVIEW B 77, 115126 �2008�

115126-2



seen by the probe is due to the ion cores, is given in the
Appendix. Thus, using the single-particle approximation for
the sample,

H = �c� · �p +
e

c
A�r�
 + �mc2� + �c�s · �ps +

e

c
A�rs�


+ �smc2� + v��r� + e2 1

�r − rs�
+ v�rs� + Hrad, �8�

where the quantities labeled by the letter s refer to the sample
electron, and the unlabeled quantites refer to the probe elec-
tron. In the remainder of this paper, we set v�→0, though the
generalization of the theory to include diffraction is not ex-
pected to be difficult.

As it turns out,12 we may start from an effective
Schrödinger treatment of both the sample and the probe
rather than a Dirac treatment. The treatment of the probe by
a “relativistically corrected” Schrödinger equation is stan-
dard practice13 in much of EELS theory, and is appropriate12

for modern microscope energies of interest here �e.g., a few
hundred keV�. The relativistic correction to the Schrödinger
equation of the probe consists in simply replacing the mass
of the probe m by the relativistic mass m�=m	, where 	
=1 /�1−v0

2 /c2. Moreover, working with a Schrödinger equa-
tion treatment facilitates contact with the “vacuum-
relativistic” magic-angle theory of Schattschneider et al. We
will indicate later how the results change if we retain a full
Dirac treatment of the electrons. Thus, we may start with the
Hamiltonian

H =
p + �e/c�A�r��2

2m�
+

ps + �e/c�A�rs��2

2m

+ v�rs� +
e2

�rs − r�
+ Hrad

� H0 +
e

m�c
p · A�r� +

e

mc
ps · A�rs� +

e2

�rs − rp�
+ O�A2� .

�9�

In this theory, the unperturbed states are then direct prod-
ucts of unperturbed sample electron states �which in calcula-
tions can be described, for example, by the computer code14

FEFF8�, unperturbed probe electron states �plane waves, ig-
noring diffraction�, and the free �transverse� photon states.
Also, from now on, we ignore the interaction terms which
are O�A2�. Thus, our perturbation is

U =
e2

�r − rs�
+

e

m�c
p · A�r� +

e

mc
ps · A�rs� , �10�

and we are interested in matrix elements of

U + UG0U + ¯ , �11�

where the one-particle Green’s function is

G0�E� =
1

E − H0 + i

�12�

and 
 is a positive infinitesimal. The matrix elements are
taken between initial and final states �ordered as probe,
sample, photon�

�I� = �kI��i��0� and �F� = �kF��f��0� . �13�

To lowest order �e2� there will be a “longitudinal” �instanta-
neous Coulomb� contribution to the matrix element, and a
transverse �photon mediated� contribution, as illustrated in
Fig. 1.

kF

i f

kI

q

kF

i f

kI

q , ω

kF

i f

kI

−q ,−ω

FIG. 1. Feynman diagrams for the scattering process due to both
the instantaneous Coulomb interaction �upper� and the transverse
photon interaction �middle, lower�. The solid lines labeled by mo-
menta kI and kF represent the probe particle; thick solid lines la-
beled by the letters i and f represent the sample particle; the dashed
line is the instantaneous Coulomb interaction; and the wiggly lines
are transverse photons. Time flows to the right.
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Instead of elaborating the details from standard perturba-
tion theory, we simply write down the result for the matrix
element

M =
4�e2

V
� 1

q2 �f �eiq·rs�i� +
1

�2 − c2q2

kT
j

m�
�f �

ps
j

m
eiq·rs�i�
 ,

�14�

where kT �see Fig. 2� is the part of the initial �or final� mo-
mentum which is perpendicular to the momentum transfer
�q. In the remainder of this paper, we will choose our units
such that �=1.

kT
j = ��lj −

qlqj

q2 	kF
l = ��lj −

qlqj

q2 	kI
l . �15�

The result of Eq. �14� is easy to understand diagrammati-
cally. For example, to each wiggly line of momentum q and
energy �, we may assign a value

1

� − c�q�
��ij −

qiqj

q2 	2�c

V�q�
. �16�

At this point, we note that the relativistic many-body version
of Eq. �14� can be obtained by making intuitively reasonable
replacements such as p /m→c�, eiq·rs→�ie

iq·r�i�
. See the Ap-

pendix for further details.
Equation �14� is equivalent to the matrix elements given

by Fano in Eq. �12� of Ref. 8. The cross section given by
Fano in Eq. �16� of Ref. 8, in which the matrix elements have
been summed incoherently, is not generally correct and is the
source of the magic angle mystery.11

Before continuing to the dipole approximation, it is useful
to rewrite Eq. �14� using the definition

kT = kI − q
q · kI

q2 �17�

to eliminate kT in favor of kI �or, equivalently, v0=kI /m��.
Making this replacement, we obtain

M =
4�e2

V
� 1

q2 �f �eiq·r�i� −
q · v0

mq2

�f �q · peiq·r�i�
�2 − c2q2

+
�f �v0 · �p/m�eiq·r�i�

�2 − c2q2 
 , �18�

which can be rewritten as

M =
4�e2

V

1

q2 − ��2/c2�
�f �eiq·r�1 −

v0 · p

mc2 −
�2

q2c2

��1 −
q · p

m�
	
�i� , �19�

where we have made use of q ·v0=� in order to cancel cer-
tain terms which appear after commuting the exponential
through to the far left. Also, we have removed the label s
from the position and momentum of the sample electron.
This change in notation will be used throughout the remain-
der of this paper.

Equation �19� is the same as Eq. �6� of Schattschneider et
al., except for an “extra” term

�f �eiq·r�1 −
q · p

m�
	�i� . �20�

Fortunately, this term may be simplified by considering the
commutator

eiq·r,H0� = �eiq·r,
p2

2m

 = eiq·r�−

p · q

m
−

q2

2m
	 , �21�

where the first equal sign follows from the fact that eiq·r

commutes with everything in H0 except for the kinetic term
of the sample electron �by its definition, H0 explicitly con-
tains only local potentials�. Then, using the fact that for any
operator O,

�f �O,H0��i� = �f �O�i��Ei − Ef� = �f �O�i��− �� , �22�

we have

�f �eiq·r�i��− �� = − �f �eiq·r�p · q

m
+

q2

2m
	�i� �23�

and, thus,

�f �eiq·r�1 −
p · q

m�
	�i� = �f �eiq·r q2

2m�
�i� . �24�

Making the above replacement in Eq. �19�, we find

M =
4�e2

V

1

q2 − �2/c2 �f �eiq·r�1 −
v0 · p

mc2 −
�2

q2c2

q2

2m�
	�i�

�25�

and we see that the extra term only changes the result by
order � /mc2, where mc2 is the rest energy of an electron and
� is the energy lost;

M =
4�e2

V

1

q2 − �2/c2 �f �eiq·r�1 −
v0 · p

mc2 −
�

2mc2	�i�

=
4�e2

V

1

q2 − �2/c2 �f �eiq·r�1 −
v0

mc2 · �p +
q

2
		�i� .

�26�

Equation �26� is the same as what Schattschneider et al.

kI

kF

kT

q

q⊥

FIG. 2. The relevant momenta: kI is the initial momentum of the
probe particle, kF is the final momentum of the probe particle, q is
the momentum transfer kI−kF, and kT is the part of both the initial
and final momenta which is perpendicular to the momentum
transfer.
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would have obtained if they had not neglected the commu-
tator p ,A�.

That a term proportional to p+q /2 rather than simply p
appears in Eq. �26� is correct and can be understood from the
following simple example: The interaction Hamiltonian for a
point particle with an external field is given by e
−ev ·A /c, or rather

Hint �� d3x�n�x��x� −
1

c
j�x� · A�x�	 , �27�

where n�x� is the density and j�x� is the current, and where
the above integral, with the potentials considered as func-
tions of the source location, is a convolution in space and,
thus, a product in Fourier space—the rough correspondence
indicated by the “�” symbol in Eq. �27� is considered more
rigourously in the Appendix. Next, we note that the Fourier
transform of the current density �in second quantization� is
given for a free particle by15

j�q� =
1

mV
�

k
�k +

q

2
	ck+q

† ck, �28�

where

��x� = �
k

ckeik·x, �29�

and where q is considered to be the momentum transferred to
the sample. This is in agreement with the usual conventions
of EELS

q = kI − kF. �30�

Thus, we see that Eq. �26� is indeed correct, in both sign and
magnitude of the extra term.

Dipole approximation and the magic angle

In the dipole approximation, Eq. �26� reduces to

4�e2

V

1

q2 − �2/c2 �f ��iq · r −
v0 · p

mc2 	�i� . �31�

The term �1−v0 ·q /2mc2� does not contribute because �i � f�
=0. Now, we make use of the replacement p /m→ i�r which
is appropriate within the matrix element to find

4�e2

V

i

q2 − �2/c2 �f ��q −
v0�q · v0�

c2 	 · r�i� . �32�

We have, thus, found the same “shortened q vector” that
appears in Eq. �15� of Schattschneider et al. and Eq. �2� of
Jouffrey et al. Specifically, for an initial electron velocity v0
in the z direction, we have found the replacement qz→qz�1
−v0

2 /c2� which, in turn, leads to a significant correction �on
the order of 100% for typical electron microscopes� to the
magic angle.

The magic angle �M is defined for materials with a c axis
by the equality of two functions of collection angle �c:

F��c� � �
0

�c

d��
�2

�2 + �E
2 /	4�2 �33�

and

G��c� � 2
�E

2

	4�
0

�c

d��
1

�2 + �E
2 /	4�2 , �34�

where 	= �1−v0
2 /c2�−1/2, �E is the so-called characteristic

angle given in terms of the energy loss �, the initial probe
speed v0, and kI�E=� /v0. Both of the above integrals may
easily be evaluated in terms of elementary functions, but we
leave them in the above form for comparison with the theory
of Sec. III. Equations �33� and �34� both make use of the
approximation sin�����. Since typical scattering angles are
on the order of milliradians, this small angle approximation
is highly accurate.

The expressions for F��c� and G��c� are easily derived
within the framework of the Schattschneider “vacuum
theory”11 and result in a ratio of magic angle to characteristic
angle which is independent of the material which makes up
the sample. The factors of �1−v0

2 /c2� which appear in Eqs.
�33� and �34� come from including the transverse effects �as
in Sec. I� and, thus, the nonrelativistic �c→�� result for the
ratio of magic angle to characteristic angle is independent of
transverse effects. The transverse correction to the magic
angle is on the order of 100%. This corrected theoretical
magic angle is in much better agreement with the experimen-
tally observed magic angle, although the experimentally ob-
served magic angle seems be somewhat larger �on the order
of 30%� and sample dependent.2 These further discrepancies
between theory and experiment are addressed in Sec. III.

III. MACROSCOPIC ELECTRODYNAMIC EFFECTS

As discussed above, the result of Schattschneider et al. is
nearly in agreement with that obtained in Sec. II of this paper
in the vacuum-relativistic limit. However, because of the re-
sidual discrepancy between these results and experiment, we
now consider how macroscopic electrodynamic effects can
be incorported into the quantum-mechanical single-particle
formalism. We find that the corrections to the magic angle
which result can be quite substantial at low energy loss.
However, we are unaware of any experimental data in this
regime with which to compare the theory. Nevertheless, the
inclusion of dielectric response introduces a sample depen-
dence of the theoretical magic angle which is consistent with
the sign of the observed discrepancy.

Certain condensed matter effects are already present in
the existing formalism via the behavior of the initial and final
single-particle states in the sample, and in many-electron ef-
fects which are neglected in the independent electron theory.
However, the macroscopic response of the sample can be
taken into account straightforwardly within a dielectric for-
malism. This procedure is similar to the well-known “match-
ing” procedure between atomic calculations and
macroscopic-dielectric calculations of the stopping
power.16–18 That is, the fast probe may interact with many
atoms at once, as long as the condition v0��0a �where �0 is
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a typical electronic frequency and a a typical length scale� is
fulfilled. Under these conditions, the sample can be treated
using the electrodynamics of continuous media.16

Effects due to the macroscopic response of the system can
be included within a formalism that parallels that of
Schattschneider et al. simply by choosing the “generalized
Lorentz gauge”16 for a given dielectric function ����, instead
of the Lorentz gauge of the vacuum-relativistic theory. In the
generalized Lorentz gauge, most of the formal manipulations
of Schattschneider et al. carry through in the same way, ex-
cept that instead of Eq. �19� we end up with

M =
4�e2

����V
1

q2 − �����2/c2 �f �eiq·r�1 −
����v0

mc2 · �p +
q

2
	
�i� .

�35�

The factors of � in Eq. �35� can be understood physically as
due to the fact that c→c /�� in the medium, and also to the
fact that the sample responds to the electric field E rather
than the electric displacement D. Equation �35� is derived in
the following section.

Generalized Lorentz gauge calculation

We consider a probe electron which passes through a con-
tinuous medium characterized by a macroscopic frequency-
dependent dielectric constant ���� and magnetic permeabil-
ity �=1. It is appropriate to ignore the spatial dispersion of
the dielectric constant at this level of approximation.19 Then
Maxwell’s equations are

� · D = 4��ext, �36�

with D=�E, and

� � B =
4�jext

c
+

1

c

�D

�t
, �37�

where the charge and current densities �ext and jext refer only
to the “external” charge and current for a probe electron
shooting through the material at velocity v0. The other two
Maxwell equations refer only to E and B, and can be satis-
fied exactly using the definitions

E = − � −
1

c

�A

�t
�38�

and

B = � � A . �39�

We next insert Eqs. �38� and �39� into Eqs. �36� and �37� and
choose the generalized Lorentz gauge16

� · A +
1

c

�

�t
� dt���t − t���t�� = 0. �40�

This gauge choice leads to the momentum space �q ,�� equa-
tions

�− q2 + ����
�2

c2 
�q,�� = 4�
�ext�q,��

����
�41�

and

�− q2 + ����
�2

c2 
A�q,�� = 4�
jext�q,��

c
. �42�

We now write �ext�q ,��= �−2�e����−q ·v0� and jext=v0�ext
to find explicit expressions for  and A:

�����q,�� =
4��− 2�e���� − q · v0�

�����2/c2� − q2 �43�

and

A�q,�� =
v0

c
�����q,�� . �44�

Then, proceeding roughly in analogy with Schattschneider et
al., we have

H = H0 +
e

2mc
�p · A + A · p� − e + O�A2�

= H0 +
e

2mc
�2A · p − i � · A� − e + O�A2� . �45�

Next, evaluating the perturbation U�H−H0 with A
= �v0 /c�����, we find

U =
e

mc
�

����
c

v0 · p − i�
v0

2c
· �	 − e . �46�

In calculating the matrix element of U, it is appropriate to
replace � by iq for the case when the final states are on
the left in the matrix element. Thus,

M � �f ��kf�U�ki��i� = − e�q,���f �eiq·r

��1 −
����
mc2 v0 · �p + q

2
	
�i� . �47�

Alternatively, since

�q,�� =
− 4�e

�����q2 − �2����/c�
, �48�

we have

M =
4�e2

�����q2 − �����2/c2�
�f �eiq·r�1 −

����
mc2 v0 · �p + q

2
	
�i� .

�49�

In the dipole approximation, Eq. �49� reduces to

4�e2

����V
1

q2 − �����2/c2 �f �i�q − ����
v0�q · v0�

c2 
 · r�i� , �50�

where ���� is the generally complex valued macroscopic di-
electric constant which can be calculated, for example, by
the FEFFOP code.20 Consequently, we find that instead of the
longitudinal q-vector replacement

qz → qz�1 − �2� �51�

found by Jouffrey et al. and Schattschneider et al., we obtain
the replacement
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qz → qz1 − �����2� , �52�

which is appropriate for an electron traversing a continuous
dielectric medium. In the same way that Eq. �51� can be
understood classically as being due to a charge in uniform
motion in vacuum,21 Eq. �52� can be understood as due to a
charge in uniform motion in a medium. Because the motion
is uniform, the time dependence can be eliminated in favor
of a spatial derivative opposite to the direction of motion and
multiplied by the speed of the particle. For motion in the z
direction,

�

�t
→ − v0

�

�z
. �53�

Therefore, if we consider the electric field

E = − � −
1

c

�A

�t
→ − � +

v0

c

�A

�z
, �54�

Eq. �51� follows from the substitution Az= �v0 /c�, whereas
Eq. �52� follows by making the correct substitution in the
presence of a medium

Az =
v0

c
� , �55�

which in Fourier space gives

E�q,�� = �− iq + ẑ
����v0

2

c2 iqz
�q,�� , �56�

which is equivalent to Eq. �52�.
Because Eq. �52� depends on the macroscopic-dielectric

function, the ratio �M /�E, which formerly was a function
only of v0, will now show material dependence. This is seen
from the generalization of Eqs. �33� and �34�, the equality of
which gives the magic angle. Instead of Eq. �33� for F��c�,
we now have

F��c� � �
0

�c

d��
�2

��2 + �E
2g�2

, �57�

and instead of Eq. �34�, we now have

G��c� � 2�E
2 �g�2�

0

�c

d��
1

��2 + �E
2g�2

, �58�

where

g = 1 − ����v0
2/c2 �59�

is a complex number which replaces 1 /	2 in the vacuum-
relativistic theory.

If one can calculate the macroscopic dielectric function of
the sample by some means,20 then the material-dependent
magic angle can be determined theoretically and compared
to experiment. Furthermore, the correction to the magic
angle given by the introduction of the macroscopic-dielectric
constant relative to the relativistic macroscopic “vacuum
value” of Jouffrey et al. is seen to be typically positive �since
Re���1 and 0� Im���, in rough agreement with
observation.2 In fact, it turns out that the correction is always
positive for the materials we consider, and is substantial only

for low energy loss where the dielectric function differs sub-
stantially from its vacuum value. For modern EELS experi-
ments which use relativistic microscope energies and exam-
ine low energy loss regions, the effect of the dielectric
correction on the magic angle should be large.

Example calculations using our relativistic dielectric
theory compared to both the relativistic vacuum theory of
Schattschneider et al. and to the nonrelativistic vacuum
theory are shown in Fig. 3 for the materials boron nitride and
graphite. The data of Daniels et al.2 is also shown in the
figures. We have not attempted to estimate the true error bars
for the data; the error bars in the figure indicate only the error
resulting from the unspecified finite convergence angle.

IV. CONCLUSIONS

We have developed a fully relativistic theory of the magic
angle in electron energy loss spectra starting from the QED
Hamiltonian of the many-body system. As with the single-
particle theory of Jouffrey et al. and Schattschneider et al.,
we find a factor of 2 transverse correction to the nonrelativ-
istic ratio �M /�E. We have also shown how macroscopic
electrodynamic effects can be incorporated into the relativis-
tic single-particle formalism of Schattschneider et al. In par-
ticular, we predict that these dielectric effects can be impor-
tant for determining the correct material-dependent magic
angle at low energy loss, where the difference between the
dielectric function relative to its vacuum value is observed to
be substantial.

Several other factors may be important for correctly de-
scribing the energy loss dependence of the magic angle in
anisotropic materials. In particular, we believe that further
study of the many-body effects �beyond a simple
macroscopic-dielectric model� via explicit calculations of the
microscopic-dielectric function and including time-
dependent density functional–Bethe-Salpeter theory22 is an
important next step in the description of all EELS phenom-
ena, including the magic angle.
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APPENDIX: RELATIVISTIC EFFECTS

Starting from Eq. �7� we write �the notation H0 in the
Appendix differs from that in the main text�:

H0 = c� · p + �mc2 + ve-core�r� + �
i=1

N

c��i� · p�i� + ��i�mc2

+ ve-core�r�i��� +
1

2 �
1=i�j=1

N
e2

�r�i� − r�j��
+ Hrad �A1�

and
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U = e� · A�r� + �
i=1

N
e2

�r − r�i��
+ �

i=1

N

e��i� · A�ri� . �A2�

We are interested in matrix elements of the perturbation

U + UG0U + ¯ �A3�

between eigenstates of the unperturbed Hamiltonian

�I� = �ki���i��0� and �F� = �kf��� f��0� . �A4�

The difference between the many-body case and the single-
particle theory of the sample is that the wave function of the
sample now depends on N electron coordinates, instead of
one effective coordinate. Also, we see that the only potential
“seen� by the probe �i.e., included in the unperturbed probe
Hamiltonian� is the ve-core potential. This is to be contrasted
with the “unperturbed� sample Hamiltonian which includes
not only the ve-core but also the Coulomb interactions be-
tween all the sample electrons.

Consequently, working with a unit volume and proceed-
ing exactly as in the single-particle case, we find a longitu-
dinal contribution to the matrix element

ML =
4�e2

q2 u†�k f�u�ki��� f��
i=1

N

eiq·r�i�
��i� �A5�

and a transverse contribution

MT =
4�e2

�2/c2 − q2u†�k f��Tu�ki� · �� f��
i=1

N

��i�eiq·r�i�
��i� ,

�A6�

where

�T = � − q
q · �

q2 , �A7�

and where the u�p� are the usual free-particle Dirac spinors,
normalized such that

u†�p�u�p� = 1. �A8�

The two matrix elements ML and MT are to be summed
and then squared, but before proceeding with this plan, we
make the following useful definitions: The transverse Kro-
necker delta function �transverse to momentum transfer�

�T
ij = �ij −

qiqj

q2 ; �A9�

the �Fourier transformed� density operator

n�q� = �
i

N

e−iq·r�i�
; �A10�

and the �Fourier transformed� current operator

j�q� = �
i

N

c��i�e−iq·r�i�
. �A11�

Next, we recall some properies of the Dirac spinors u�p�
and of Dirac matrices which we will presently find useful:

�i� There are four independent spinors �u�1� ,u�2� ,u�3� ,u�4��,
the first two of which will refer to positive energy solutions,
and the second two of which will refer to negative energy
solutions �and are not used in this calculation�.

�ii� The positive energy spinors satisfy a “spin sum”

�
s=1

2

u�s��p�u�s�†
�p� =

1

2E�p�
E�p� + c� · p + �mc2�

�
1

2E�p�
E�p� + hD�p�� , �A12�

where E�p�=�p2c2+m2c4.
�iii� The Dirac matrices satisfy the trace identities

Tr��i� j� = 4�ij , �A13�

Tr��i� j�k�l� = 4��ij�kl − �ik� jl + �il� jk� , �A14�

Tr��T
i � j� = Tr��T

i �T
j � = 4�T

ij , �A15�

Tr��i�T
j �k�T

l � = 4��T
ij�T

kl − �ik�T
jl + �T

il�T
jk� . �A16�
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FIG. 3. The magic angle to characteristic angle ratio �M /�E is
compared for three differing theories and one experiment �Ref. 2�.
The materials considered in the figure are boron nitride �top figure�
and graphite �bottom�. The microscope voltage is fixed at 195 keV.
Both the nonrelativistic and relativistic vacuum theories show no
dependence on the energy loss and no dependence on the material.
The relativistic dielectric theory shows that the magic angle should
deviate from the vacuum value by a significant amount in regions
where the macroscopic dielectric response is substantial.
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�iv� Finally, we note that in this calculation, there are
many simplifications due to the fact that ��mc2�E�kI�
�E�kF�. For example,

1

2EiEj
�EiEj + m2c4 + c2ki · k j� = 1 −

�

E�ki�
+ O� �2

E�ki�2	 � 1.

Throughout the calculation, we ignore terms of order
� /E�pI�. Using these identities, it is easy to see that

1

2 �
si=1

2

�
sf=1

2

�ML�2 = �4�e2

q2 	2

���F�nq
†��I��2, �A17�

which has the same form as in the nonrelativistic case �up to
order � /Ei�; the squared matrix element is much simplified
by the sum over final probe spin and average over initial
probe spin. Of course, the matrix element itself is completely
general in terms of probe spin, but many simplifications arise
from ignoring the probe spin and exploiting the spin sums.

Continuing on to the transverse matrix element—and in-
cluding a few more of the details �a, b, c, and d are Dirac
indices�—we find

1

2 �
si=1

2

�
sf=1

2

�MT�2 =
1

2 �
si=1

2

�
sf=1

2 � 4�e2

�2/c2 − q2	2

u�k f�a
�sf�*�T

mabu�ki�b
�si�u�ki�c

�si�*�T
ncdu�k f�d

�sf���F�jm�q�†��I���I�jn�q���F�

= � 4�e2

�2/c2 − q2	2

��F�jm�q�†��I���I�jn�q���F�Tr�E�kf� + hD�k f���T
mE�ki� + hD�ki���T

n�

= � 4�e2

�2/c2 − q2	2���I�
vT · j�q�

c2 ��F��2

. �A18�

For the cross term, we find

1

2 �
si=1

2

�
sf=1

2

MLM
T
* = �4�e2�2 1

q2��2/c2 − q2�
��F�n†�q���I�

���I�
j�q� · vT

c2 ��F� . �A19�

Thus, we have finally derived an expression for the relativ-
istic many-body summed-then-squared matrix elements
summed and averaged over spins,

1

2�
si

�
sf

�ML + MT�2

= �4�e2

V
	2� ��I�n�q���F�

q2 +
��I�vT · j�q���F�

�2 − q2c2 �2

= � 4�e2

V��2/c2 − q2�
2���I�n�q� −
v0 · j�q�

c2 ��F��2

.

�A20�

The last equality follows from

q · ��I�j�q���F� = ���I�n�q���F� , �A21�

which itself follows by considering the commutator analo-
gous to that of Eq. �21�.

The final line of Eq. �A20� is quite pleasing since we have
found that if we can “ignore� the spin of the probe particle,
we may as well have started by taking matrix elements be-
tween electronic states only of the much simpler interaction
Hamiltonian

U� =� d3x�n�x���x − xp� −
j�x� · A��x − xp�

c

 ,

�A22�

where the fields �� ,A�� are just the e−i�t components of the
classical field of a point charge of velocity v0 in the Lorentz
gauge, and where

n�x� = �
i

N

��x − x�i�� �A23�

and

j�x� = �
i

N

c��i���x − x�i�� . �A24�

That is, if we take Eq. �A22� as our starting point and pro-
ceed in the usual way, we will find that our squared matrix
elements are exactly the same as what we know to be correct
from Eq. �A20�. The photons have dropped out entirely.
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